
Project systems theory – Solutions
Resit exam 2017–2018, Thursday 12 April 2018, 14:00 – 17:00

Problem 1 (4 + 8 = 12 points)

A simple model for the metabolism of alcohol in the body is given by

ċb(t) = qb
(
cl(t)− cb(t)

)
ċl(t) = ql

(
cb(t)− cl(t)

)
− φ

(
cl(t)

)
+ u(t)

(1)

where cb(t) and cl(t) are the concentrations of alcohol in the body and liver, respectively. The
intake of alcohol is given by the input u(t) and the function

φ(cl) = qmax
cl

c0 + cl
(2)

gives the rate at which the liver reduces the alcohol concentration. The constants qb, ql, qmax, and
c0 are all positive.

a) The equilibrium point (c̄b, c̄l) for u(t) = ū is obtained by solving (1) for ċb = 0 and ċl = 0.
It then immediately follows from the first equation that c̄l = c̄b, after which the substitution
of this result in the second equation of (1) yields

qmax
c̄l

c0 + c̄l
= ū, (3)

where the definition of φ in (2) is used. Solving (3) for c̄l gives the final result

c̄b = c̄l =
c0ū

qmax − ū
. (4)

Note that the assumption ū < qmax implies that the equilibrium is well-defined.

b) Before finding the linearized dynamics, let x denote that state of (1) as

x =

[
x1

x2

]
=

[
cb
cl

]
(5)

and define the function f to be the corresponding vector field, i.e.,

f(x, u) =

[
qb(x2 − x1)

ql(x1 − x2)− φ(x2) + u

]
. (6)

After defining the perturbations

x̃ = x− x̄, ũ = u− ū, (7)

with x̄ = [ c̄b c̄l ]T, the linearized dynamics is given as

˙̃x(t) =
∂f

∂x
(x̄, ū)x̃(t) +

∂f

∂u
(x̄, ū)ũ(t). (8)

Then, it follows from (6) that

∂f

∂x
(x, u) =

[
−qb qb
ql −ql − dφ

dx2
(x2)

]
, (9)
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with

dφ

dx2
(x2) = qmax

c0
(c0 + x2)2

, (10)

such that

∂f

∂x
(x̄, ū) =

[
−qb qb
ql −ql − qmax

c0
(c0+x̄2)2

]
. (11)

Moreover, it is immediate that

∂f

∂u
(x̄, ū) =

[
0
1

]
. (12)
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Problem 2 (16 points)

Consider the linear system

ẋ(t) =


0 1 0 0
0 0 1 0
0 0 0 1
−8 −4a −b −a

x(t), (13)

where a, b ∈ R.
To determine stability of (13), denote

A =


0 1 0 0
0 0 1 0
0 0 0 1
−8 −4a −b −a

 , (14)

and note that A is a so-called companion matrix. Consequently, its characteristic polynomial is
obtained immediately as

∆A(λ) = λ4 + aλ3 + bλ2 + 4aλ+ 8. (15)

Now, to determine the values of a, b for which the system (13) is stable (or, equivalently, for which
the polynomial (15) is stable), we will use the Routh-Hurwitz test.

However, before setting up the Routh-Hurwitz table, it is recalled that a necessary condition
for a polynomial to be stable is that all its coefficient have the same sign (and are nonzero). This
implies in particular that

a > 0, b > 0. (16)

To proceed, consider the following Routh-Hurwitz table:

λ4 λ3 λ2 λ1 λ0

a× 1 a b 4a 8
1× a 4a

a2 a(b− 4) 4a2 8a (result of Step 1)
(b− 4)× a (b− 4) 4a 8 (result of Step 2)

a× (b− 4) 8
4a(b− 6)× (b− 4)2 4a(b− 6) 8(b− 4) (result of Step 3)

(b− 4)2× 4a(b− 6)

(17)

Recall that the Routh-Hurwitz criterion states that the polynomial ∆A in (15) if and only if its
two leading coefficients have the same sign and that the polynomial obtained in Step 1 is stable.
Given (16), the coefficients 1 and a satisfy the first statement. Then, using a similar reasoning as
before, it is necessary that

b− 4 > 0 ⇔ b > 4 (18)

in order for the polynomial that results from Step 1 to be stable. Now we thus have a > 0 and
b > 4.

Note that, as a > 0 is a necessary condition for stability, the polynomial that results from
Step 1 can be dived by a to obtain the result of Step 2.

Next, applying the Routh-Hurwitz criterion to the result of Step 2 leads to the result of Step 3.
Clearly, this gives

b > 6 (19)
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as a necessary condition for stability, such that we obtain a > 0 and b > 6.
Repeating this procedure gives the result of Step 4 (not listed in the table) as the polynomial

p(λ) =
(
4a(b− 6)

)(
4a(b− 6)λ+ 8(b− 4)

)
, (20)

which only root is computed as

λ = − 8(b− 4)

4a(b− 6)
. (21)

Recall that necessary conditions for stability are given by a > 0 and b > 6. However, under these
conditions, it is readily verified that λ < 0, i.e., the polynomial p is stable. Consequently, the
original polynomial (15) is stable if and only if

a > 0, b > 6. (22)
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Problem 3 (4 + 12 + 6 = 22 points)

Consider the system

ẋ(t) = Ax(t) +Bu(t), (23)

with state x(t) ∈ R2, input u(t) ∈ R, and where

A =

[
−7 −4
4 3

]
, B =

[
−3
2

]
. (24)

a) Controllability of the system (23)-(24) can be verified by computing

[
B AB

]
=

[
−3 13
2 −6

]
, (25)

which is easily verified to have rank 2. Consequently, the system is controllable.

b) Since, by the result of a), the system (23)-(24) is controllable, there exists a nonsingular
matrix T such that

T−1AT =

[
0 1
α1 α2

]
, T−1B =

[
0
1

]
for some real α1 and α2. This is in fact the controllable canonical form and the numbers α1

and α2 equal (but with negative sign) the coefficients of the characteristic polynomial of A
in (23). Therefore, we compute

∆A(λ) = det(λI −A) =

∣∣∣∣ λ+ 7 4
−4 λ− 3

∣∣∣∣ (26)

= (λ+ 7)(λ− 3) + 16 (27)

= λ2 + 4λ− 5 (28)

= λ2 + a1λ+ a2, (29)

such that

a1 = 4, a2 = −5, (30)

and, in particular,

α1 = −a2 = 5, α2 = −a1 = −4. (31)

The corresponding transformation T can be constructed by computing the vector q2 as

q2 = B =

[
−3
2

]
(32)

as well as the vector q1 given by

q1 = AB + a1B =

[
13
−6

]
+ 4

[
−3
2

]
=

[
1
2

]
. (33)

Here, note that the matrix-vector product AB was already computed in (25). Then, the
matrix T is obtained as

T =
[
q1 q2

]
=

[
1 −3
2 2

]
, (34)
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whereas its inverse can be computed to be

T−1 =
1

8

[
2 3
−2 1

]
. (35)

Then, by direct computation, it is verified that

T−1AT =
1

8

[
2 3
−2 1

] [
−7 −4
4 3

] [
1 −3
2 2

]
=

1

8

[
2 3
−2 1

] [
−15 13
10 −6

]
=

[
0 1
5 −4

]
, (36)

T−1B =
1

8

[
2 3
−2 1

] [
−3
2

]
=

[
0
1

]
, (37)

which is indeed the desired form.

c) To place the eigenvalues of A + BF at −1 and −2, define the polynomial p that has these
eigenvalues as its roots. This polynomial is given as

p(λ) = (λ+ 1)(λ+ 2) = λ2 + 3λ+ 2. (38)

After defining Ā = T−1AT and B̄ = T−1B (see the results (36) and (37), respectively) and
introducing the matrix

F̄ =
[
F̄1 F̄2

]
, (39)

we obtain

Ā+ B̄F̄ =

[
0 1

5 + F̄1 −4 + F̄2

]
. (40)

The matrix Ā+ B̄F̄ has the characteristic polynomial

∆Ā+B̄F̄ (λ) = λ2 + (4− F̄2)λ− (5 + F̄1). (41)

Matching coefficients of (38) and (41) leads to

F̄1 = −7, F̄2 = 1. (42)

After observing that

T
(
Ā+ B̄F̄

)
T−1 = A+BF̄T−1, (43)

it is clear that the desired feedback matrix F is given as

F = F̄ T−1 = 1
8

[
−7 1

] [ 2 3
−2 1

]
= 1

8

[
−16 −20

]
=
[
−2 − 5

2

]
. (44)
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Problem 4 (3 + 3 + 3 + 3 + 4 + 6 = 22 points)

Consider the system

ẋ(t) =

−2 −1 0
1 −2 0
6 −4 3

x(t) +

 1
0
0

u(t), y(t) = [ 1 −1 1 ]x(t), (45)

and denote for future reference

A =

−2 −1 0
1 −2 0
6 −4 3

 , B =

 1
0
0

 , C = [ 1 −1 1 ]. (46)

a) Stability of (45) is determined by the spectrum σ(A) of A in (46), which, due to its block
lower triangular structure, is given as

σ(A) = σ

([
−2 −1
1 −2

])
∪ {3}. (47)

As 3 ∈ σ(A), it is clear that (45) is not asymptotically stable.

We will also compute the full spectrum of A. The eigenvalues of the upper-left block are
given as the roots of ∣∣∣∣ λ+ 2 1

−1 λ+ 2

∣∣∣∣ = (λ+ 2)2 + 1 = 0, (48)

which implies that λ+ 2 = ±i. Consequently, its roots read −2 + i and −2− i, such that

σ(A) = {−2 + i,−2 + i, 3}. (49)

b) A direct computation of the controllability matrix yields

[
B AB A2B

]
=

 1 −2 3
0 1 −4
0 6 2

 , (50)

which is observed to have rank three. Thus, the system (45) is controllable.

c) The system is stabilizable as this is implied by controllability (see problem b)).

d) To determine whether the system is observable, compute C
CA
CA2

 =

 1 −1 1
3 −3 3
9 −9 9

 . (51)

As all rows are scaled versions of the first row, it is immediate that

rank

 C
CA
CA2

 = 1 < 3, (52)

and the system is not observable.

e) The unobservable subspace N is given by

N = ker

 C
CA
CA2

 , (53)
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Using (51), it follows that

N = span{

 1
1
0

 ,
 0

1
1

} (54)

is a basis for N

For the final question in Problem 4, consider the system

ẋ(t) =

 2 2− a 1− a
0 a 1
0 0 a

x(t), y(t) =
[

1 1 1
]
x(t) (55)

with a ∈ R. Denote

A =

 2 2− a 1− a
0 a 1
0 0 a

 , C =
[

1 1 1
]
. (56)

f) By the Hautus test, (55) is detectable if and only if the following implication holds

λ ∈ σ(A), Re(λ) ≥ 0 =⇒ rank

[
λI −A
C

]
= n (57)

where n is the dimension of the state space of (55), i.e., n = 3.

To evaluate the condition (57), it is first remarked that the upper triangular structure of A
immediately reveals its spectrum as

σ(A) = {2, a}. (58)

Now, the evaluation of (57) for λ = 2 (as Re(2) ≥ 0) gives

[
λI −A
C

]
=


λ− 2 a− 2 a− 1

0 λ− a −1
0 0 λ− a
1 1 1

 =


0 a− 2 a− 1
0 2− a −1
0 0 2− a
1 1 1

 , (59)

which has full rank if and only if a 6= 2.

If a < 0, it is clear that the condition (57) only needs to be verified for λ = 2, in which case
the result (59) shows that (55) is detectable (as a < 0 implies that a 6= 2).

It remains to be verified if there exist a ≥ 0 for which (55) is detectable. To this end, consider
(57) for λ = a to obtain

[
λI −A
C

]
=


λ− 2 a− 2 a− 1

0 λ− a −1
0 0 λ− a
1 1 1

 =


a− 2 a− 2 a− 1

0 0 −1
0 0 0
1 1 1

 . (60)

As the sum of the first two rows is a multiple of the last row, it is clear that the matrix on
the right-hand side has rank two for each a. Thus, the eigenvalue λ = a is never observable
and we conclude that (55) is detectable if and only if a < 0.
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Problem 5 (6 + 12 = 18 points)

Consider the discrete-time system

xk+1 = Axk +Buk, (61)

with state xk ∈ Rn and input uk ∈ Rm.

a) We claim that the solution of (61) for initial condition x0 ∈ Rn and input sequence {u0, u1, . . .}
is given by

xk = Akx0 +

k−1∑
i=0

Ak−i−1Bui. (62)

To show this, note that the evaluation of (62) for k = 1 immediately yields (61). It remains
to be verified that (62) satisfies the discrete dynamics (61) for k > 1. Substitution of the
expression (62) for xk in the dynamics (61) gives

xk+1 = A

(
Akx0 +

k−1∑
i=0

Ak−i−1Bui

)
+Buk, (63)

= Ak+1x0 +

k−1∑
i=0

A(k+1)−i−1Bui +Buk, (64)

= Ak+1x0 +

(k+1)−1∑
i=0

A(k+1)−i−1Bui, (65)

where it is remarked that, in the sum in (65), the term for i = (k + 1) − 1 = k reads
A0Buk = Buk. It is clear that the result (65) is again of the form (62) (but for index k + 1
instead of k), showing that the general form (62) satisfies the dynamics.

A discrete-time system (61) is said to be controllable if, for every initial condition x0 ∈ Rn and
every final state x̄ ∈ Rn, there exists an integer K > 0 and an input sequence {u0, u1, . . . , uK−1}
such that xK = x̄, with xK the solution at step K as in (62).

b) To prove that (61) is controllable if and only if

rank
[
B AB A2B · · · An−1B

]
= n, (66)

note that (62) can be written as

xk −Akx0 =
[
B AB · · · Ak−2B Ak−1B

]

uk−1

uk−2

...
u1

u0

 . (67)

In the remainder of this proof, sufficiency and necessity are proven separately.

if) Let (66) hold and consider (67) for k = n. As (66) implies that

im
[
B AB A2B · · · An−1B

]
= Rn, (68)

it follows that, for every x0 ∈ Rn, x̄ ∈ Rn, there exists an input sequence {u0, u1, . . . , un−1}
such that xn = x̄, i.e., the discrete-time system is controllable.
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only if) Let (61) be controllable. Then, for any x0 ∈ Rn and x̄ ∈ Rn, there exists an
integer K and an input sequence {u0, u1, . . . , uK−1} such that (67) holds for k = K. Stated
differently,

x̄−AKx0 ∈ im
[
B AB A2B · · · AK−1B

]
. (69)

We claim that this implies that

x̄−AKx0 ∈ im
[
B AB A2B · · · An−1B

]
. (70)

Namely, for K ≤ n, it is immediate

im
[
B AB A2B · · · AK−1B

]
⊂ im

[
B AB A2B · · · An−1B

]
, (71)

whereas the case K > n follows from the theorem of Cayley-Hamilton. In this case,

im
[
B AB A2B · · · AK−1B

]
= im

[
B AB A2B · · · An−1B

]
. (72)

Thus, we have (70). As x̄0 and x̄ are arbitrary, it follows that

im
[
B AB A2B · · · An−1B

]
= Rn, (73)

(take, e.g., x0 = 0 and arbitrary x̄) which is equivalent to the rank condition (66).
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