Project systems theory — Solutions
Resit exam 2017-2018, Thursday 12 April 2018, 14:00 — 17:00

Problem 1 (4 + 8 = 12 points)

A simple model for the metabolism of alcohol in the body is given by
& (t) = gy (a(t) — a(1))
at) = qe(t) — alt)) — ¢(alt) +u(t)

where ¢ (t) and ¢ (t) are the concentrations of alcohol in the body and liver, respectively. The
intake of alcohol is given by the input u(¢) and the function

(1)

C

P(c1) = Gmax (2)

co + ¢

gives the rate at which the liver reduces the alcohol concentration. The constants gy, g, Gmax, and
co are all positive.

a) The equilibrium point (&, &) for u(t) = @ is obtained by solving (1) for ¢, = 0 and ¢ = 0.
It then immediately follows from the first equation that ¢; = ¢, after which the substitution
of this result in the second equation of (1) yields

@]

T 3
co + ¢ " )

qu’l ax

where the definition of ¢ in (2) is used. Solving (3) for ¢ gives the final result

Cp, =0 = % (4)
Gmax — U

Note that the assumption % < ¢max implies that the equilibrium is well-defined.

b) Before finding the linearized dynamics, let « denote that state of (1) as

T | %
=[] 5] 0
and define the function f to be the corresponding vector field, i.e.,

B ap(z2 — 1)
f(z,u) = [Qz(azl —x2) — (z2) +u] ' v

After defining the perturbations
T=x-17, U=u—4a, (7)

with Z = [& ¢ |7, the linearized dynamics is given as

. 0 0

i) = 5L @ w0 + 5Lz, e, )
Then, it follows from (6) that

of @ @

aix(xau) a —q - %(l’g) s (9)



with
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T qi qi Gmax (co+72)2

Moreover, it is immediate that

%(j,a): {(1)]

(12)



Problem 2 (16 points)

Consider the linear system

0 1 0 0
. 0 0 1 0
—8 —4a —b —a
where a,b € R.
To determine stability of (13), denote
0 1 0 0
0 0 1 0
A= 0o 0o o0 1]’ (14)
—8 —4a —b —a

and note that A is a so-called companion matrix. Consequently, its characteristic polynomial is
obtained immediately as

Aa(N) = X+ aX® + A% 4 da) + 8. (15)

Now, to determine the values of a, b for which the system (13) is stable (or, equivalently, for which
the polynomial (15) is stable), we will use the Routh-Hurwitz test.

However, before setting up the Routh-Hurwitz table, it is recalled that a necessary condition
for a polynomial to be stable is that all its coefficient have the same sign (and are nonzero). This
implies in particular that

a>0, b>0. (16)

To proceed, consider the following Routh-Hurwitz table:

Al A3 A2 Al A0
ax 1 a b 4a 8
Ix a 4a
a> a(b—4)  4d? 8a  (result of Step 1) (17)
(b—4)x a (b—14) 4a 8  (result of Step 2)
ax (b—4) 8
4a(b — 6)x (b—4)% 4a(b—6) 8(b—4) (result of Step 3)
(b— 4)%x 4a(b - 6)

Recall that the Routh-Hurwitz criterion states that the polynomial A 4 in (15) if and only if its
two leading coefficients have the same sign and that the polynomial obtained in Step 1 is stable.
Given (16), the coefficients 1 and a satisfy the first statement. Then, using a similar reasoning as
before, it is necessary that

b—4>0 & b>4 (18)

in order for the polynomial that results from Step 1 to be stable. Now we thus have a > 0 and
b>4.

Note that, as @ > 0 is a necessary condition for stability, the polynomial that results from
Step 1 can be dived by a to obtain the result of Step 2.

Next, applying the Routh-Hurwitz criterion to the result of Step 2 leads to the result of Step 3.
Clearly, this gives

b>6 (19)



as a necessary condition for stability, such that we obtain a > 0 and b > 6.
Repeating this procedure gives the result of Step 4 (not listed in the table) as the polynomial

p(A) = (4a(b — 6)) (4a(b —6)A+8(b— 4)), (20)
which only root is computed as

8(b—4)
A=——07—=. 21
4a(b — 6) 1)
Recall that necessary conditions for stability are given by a > 0 and b > 6. However, under these
conditions, it is readily verified that A < 0, i.e., the polynomial p is stable. Consequently, the
original polynomial (15) is stable if and only if

a>0, b>6. (22)



Problem 3 (4 + 12 + 6 = 22 points)

Consider the system
&(t) = Ax(t) + Bu(t), (23)

with state z(t) € R?, input u(t) € R, and where
-7 -4 -3
a) Controllability of the system (23)-(24) can be verified by computing

[BAB}:[?’ 13]7

2 —6
which is easily verified to have rank 2. Consequently, the system is controllable.

b) Since, by the result of a), the system (23)-(24) is controllable, there exists a nonsingular
matrix 7" such that

T YAT = { 01 } , T 'B= [0]
a1 Qg 1

for some real o; and . This is in fact the controllable canonical form and the numbers o
and ag equal (but with negative sign) the coefficients of the characteristic polynomial of A
in (23). Therefore, we compute

_ | A+T 4
AA()\)—det()\I—A)—‘ 4 )\_3’ (26)
=A+7)(A=3)+16 (27)
=M 4+4r-5 (28)
:)\2+a1)\+a2, (29)
such that

a]p = 4, as = 75, (30)

and, in particular,
a1 = —ag = 5, as = —ay; = —4. (31)

The corresponding transformation 1" can be constructed by computing the vector ¢o as
-3
as well as the vector ¢ given by
13 -3 1
- S 3 I I

Here, note that the matrix-vector product AB was already computed in (25). Then, the
matrix T is obtained as

T=[q q2]=[; _23} (34)



whereas its inverse can be computed to be

leé{_gﬂ. (35)

Then, by direct computation, it is verified that
_ 112 3| [-7—-4]]1-3 12 3|[|-1513 01
1 — _ _
e I | e P B I | e o N B
1

EHIEI o

which is indeed the desired form.

T7'B =

oo

To place the eigenvalues of A + BF at —1 and —2, define the polynomial p that has these
eigenvalues as its roots. This polynomial is given as

p(A) = A+ 1A +2) =2 +3\+2. (38)

After defining A = T~'AT and B = T~'B (see the results (36) and (37), respectively) and
introducing the matrix

F=[F R, (39)
we obtain
T 0 1
A+ BF = 54 —d+ Py | (40)

The matrix A + BF has the characteristic polynomial
DarprN) =N+ (= FB)A = (5+F). (41)
Matching coefficients of (38) and (41) leads to
F=-7, F=1 (42)
After observing that
T(A+BF)T™'=A+BFT, (43)

it is clear that the desired feedback matrix F' is given as

FFTlé[—71][_22ﬂé[—lG—QO][—?—g]. (44)



Problem 4 (3+3+3+3+4+6 =22 points)

Consider the system

—2-10 1
W)= 1 =20 a@®+|0|ul), yi)=[1-11]z(), (45)
6 —43 0

and denote for future reference

-2 -10 1
A=|1 —=20|, B=|0o|, Cc=[1-11] (46)
6 —43 0

a) Stability of (45) is determined by the spectrum o(A) of A in (46), which, due to its block
lower triangular structure, is given as

o(A) = o ({‘12 :;D U{3). (47)

As 3 € 0(A), it is clear that (45) is not asymptotically stable.

We will also compute the full spectrum of A. The eigenvalues of the upper-left block are
given as the roots of

A+2 1
-1 X+2

‘()\+2)2+10, (48)

which implies that A + 2 = +i. Consequently, its roots read —2 + ¢ and —2 — 4, such that
o(A) ={-2+14,-2+1,3}. (49)

b) A direct computation of the controllability matrix yields

1-2 3
[BAB A°B| =0 1 —4], (50)
06 2

which is observed to have rank three. Thus, the system (45) is controllable.
c¢) The system is stabilizable as this is implied by controllability (see problem b)).

d) To determine whether the system is observable, compute

c 1-11
CA|=1]3-33]. (51)
CA? 9-99

As all rows are scaled versions of the first row, it is immediate that

C
rank | CA | =1< 3, (52)
C A2

and the system is not observable.
e) The unobservable subspace N is given by

C
N =ker | CA |, (53)
CA?



Using (51), it follows that

1 0
N=span{|1]|,[1]|} (54)
0 1

is a basis for N/

For the final question in Problem 4, consider the system

22—al—a
t)=10 a 1| x(t), y(t)=[111](t) (55)
0 0 a
with a € R. Denote
22—al—a
A=1|0 a 1 , C:[lll]. (56)
0 O a

f) By the Hautus test, (55) is detectable if and only if the following implication holds

(57)

A€o(A),Re(N\) >0 = rank{)\IO_A} =n

where n is the dimension of the state space of (55), i.e., n = 3.

To evaluate the condition (57), it is first remarked that the upper triangular structure of A
immediately reveals its spectrum as

o(A) ={2,a}. (58)

Now, the evaluation of (57) for A = 2 (as Re(2) > 0) gives

A—2a—-2a-1 Oa—2a-1

AN — A 0 A—a -1 02—a -1
[ C ]_ 0 0 A-a|l= |0 0 2-al (59)

1 1 1 1 1 1

which has full rank if and only if a # 2.

If a < 0, it is clear that the condition (57) only needs to be verified for A = 2, in which case
the result (59) shows that (55) is detectable (as a < 0 implies that a # 2).

It remains to be verified if there exist a > 0 for which (55) is detectable. To this end, consider
(57) for A = a to obtain

A—2a—2a—-1 a—2a—2a-1
M- A 0 A—a -1 0 0 -1
{ C }_ 0 0 x-al=| 0 0 o0 | (60)
1 1 1 1 1 1

As the sum of the first two rows is a multiple of the last row, it is clear that the matrix on
the right-hand side has rank two for each a. Thus, the eigenvalue A = a is never observable
and we conclude that (55) is detectable if and only if a < 0.



Problem 5 (6 + 12 = 18 points)

Consider the discrete-time system
ZTr+1 = Azy + Bug, (61)
with state xx € R™ and input u; € R™.

a) We claim that the solution of (61) for initial condition zy € R™ and input sequence {ug, u1, ...}
is given by

k—1
Tk = Akxo + Z Ak_i_lBui. (62)
=0

To show this, note that the evaluation of (62) for k¥ = 1 immediately yields (61). It remains
to be verified that (62) satisfies the discrete dynamics (61) for k& > 1. Substitution of the
expression (62) for zj, in the dynamics (61) gives

=0
k—1
= ANy + Y AR By, + Buy, (64)
1=0
(k+1)—1
= Alag+ Y ARTDTEI By, (65)
=0

k—1
Tpa1=A (Akxo + ZAkilBuZ) + Buy, (63)

where it is remarked that, in the sum in (65), the term for ¢ = (k+ 1) — 1 = k reads
A°Buy, = Buy,. Tt is clear that the result (65) is again of the form (62) (but for index k + 1
instead of k), showing that the general form (62) satisfies the dynamics.

A discrete-time system (61) is said to be controllable if, for every initial condition zy € R™ and
every final state Z € R™, there exists an integer K > 0 and an input sequence {ug, u1,...,ux_1}
such that xx = Z, with xx the solution at step K as in (62).

b) To prove that (61) is controllable if and only if
rank [ B AB A?B --- A" 'B] =n, (66)
note that (62) can be written as

Uk—1
Uk—2
a, — APzg = [B AB -+ AF=2B AR | 1 | (67)
u1
Ug
In the remainder of this proof, sufficiency and necessity are proven separately.
if ) Let (66) hold and consider (67) for k = n. As (66) implies that

im[B AB A’B --- A" 'B] =R", (68)

it follows that, for every o € R™, Z € R", there exists an input sequence {ug, %1, ..., Un—1}
such that z, = 7, i.e., the discrete-time system is controllable.



only if) Let (61) be controllable. Then, for any zy € R™ and Z € R", there exists an
integer K and an input sequence {ug,u1,...,ux—1} such that (67) holds for k = K. Stated

differently,
z— A¥zo€im[B AB A’B ... AKZ1B].
We claim that this implies that
z—AXzy€im [B AB A’B --- A"'B].
Namely, for K < n, it is immediate
im[B AB A’B --- AK"'B| Ccim[B AB A’°B --- A" 'B],
whereas the case K > n follows from the theorem of Cayley-Hamilton. In this case,
im[B AB A’B --- AK"'B] =im B AB A’B --- A" 'B].
Thus, we have (70). As T and Z are arbitrary, it follows that
im[B AB A’B --- A""'B] =R",

(take, e.g., zo = 0 and arbitrary Z) which is equivalent to the rank condition (66).
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(69)

(70)

(71)

(72)

(73)



